249 research outputs found

    10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer

    Get PDF
    BACKGROUND The comparative effectiveness of treatments for prostate cancer that is detected by prostatespecific antigen (PSA) testing remains uncertain. METHODS We compared active monitoring, radical prostatectomy, and external-beam radiotherapy for the treatment of clinically localized prostate cancer. Between 1999 and 2009, a total of 82,429 men 50 to 69 years of age received a PSA test; 2664 received a diagnosis of localized prostate cancer, and 1643 agreed to undergo randomization to active monitoring (545 men), surgery (553), or radiotherapy (545). The primary outcome was prostate-cancer mortality at a median of 10 years of follow-up. Secondary outcomes included the rates of disease progression, metastases, and all-cause deaths. RESULTS There were 17 prostate-cancer-specific deaths overall: 8 in the active-monitoring group (1.5 deaths per 1000 person-years; 95% confidence interval [CI], 0.7 to 3.0), 5 in the surgery group (0.9 per 1000 person-years; 95% CI, 0.4 to 2.2), and 4 in the radiotherapy group (0.7 per 1000 person-years; 95% CI, 0.3 to 2.0); the difference among the groups was not significant (P = 0.48 for the overall comparison). In addition, no significant difference was seen among the groups in the number of deaths from any cause (169 deaths overall; P = 0.87 for the comparison among the three groups). Metastases developed in more men in the active-monitoring group (33 men; 6.3 events per 1000 person-years; 95% CI, 4.5 to 8.8) than in the surgery group (13 men; 2.4 per 1000 person-years; 95% CI, 1.4 to 4.2) or the radiotherapy group (16 men; 3.0 per 1000 person-years; 95% CI, 1.9 to 4.9) (P = 0.004 for the overall comparison). Higher rates of disease progression were seen in the active-monitoring group (112 men; 22.9 events per 1000 person-years; 95% CI, 19.0 to 27.5) than in the surgery group (46 men; 8.9 events per 1000 person-years; 95% CI, 6.7 to 11.9) or the radiotherapy group (46 men; 9.0 events per 1000 person-years; 95% CI, 6.7 to 12.0) (P<0.001 for the overall comparison). CONCLUSIONS At a median of 10 years, prostate-cancer-specific mortality was low irrespective of the treatment assigned, with no significant difference among treatments. Surgery and radiotherapy were associated with lower incidences of disease progression and metastases than was active monitoring. (Funded by the National Institute for Health Research; ProtecT Current Controlled Trials number, ISRCTN20141297; ClinicalTrials.gov number, NCT02044172.) a bs tr ac

    Jamming at Zero Temperature and Zero Applied Stress: the Epitome of Disorder

    Full text link
    We have studied how 2- and 3- dimensional systems made up of particles interacting with finite range, repulsive potentials jam (i.e., develop a yield stress in a disordered state) at zero temperature and applied stress. For each configuration, there is a unique jamming threshold, ϕc\phi_c, at which particles can no longer avoid each other and the bulk and shear moduli simultaneously become non-zero. The distribution of ϕc\phi_c values becomes narrower as the system size increases, so that essentially all configurations jam at the same ϕ\phi in the thermodynamic limit. This packing fraction corresponds to the previously measured value for random close-packing. In fact, our results provide a well-defined meaning for "random close-packing" in terms of the fraction of all phase space with inherent structures that jam. The jamming threshold, Point J, occurring at zero temperature and applied stress and at the random close-packing density, has properties reminiscent of an ordinary critical point. As Point J is approached from higher packing fractions, power-law scaling is found for many quantities. Moreover, near Point J, certain quantities no longer self-average, suggesting the existence of a length scale that diverges at J. However, Point J also differs from an ordinary critical point: the scaling exponents do not depend on dimension but do depend on the interparticle potential. Finally, as Point J is approached from high packing fractions, the density of vibrational states develops a large excess of low-frequency modes. All of these results suggest that Point J may control behavior in its vicinity-perhaps even at the glass transition.Comment: 21 pages, 20 figure

    Technology-Supported Storytelling (TSST) Strategy in Virtual World for Multicultural Education

    Get PDF
    Learning culture through stories is an effective way for multicultural education, since stories are one of the most powerful and personal ways that we learn about the world. Storytelling, the process of telling stories, is a form of communication and a universal expression of culture. With the development of technology, storytelling emerges out of diverse ways. This study explores the storytelling in virtual worlds for multicultural education, and devises a Technology-Supported storytelling (TSST) strategy by examining and considering the characteristics of virtual worlds which could be incorporated into the storytelling, and then uses this strategy to teach Korean culture to students with different culture background. With this innovative TSST strategy in virtual world, this study expects to provide a guide to practice for teaching multicultural in digital era

    Field Measurements of Terrestrial and Martian Dust Devils

    Get PDF
    Surface-based measurements of terrestrial and martian dust devils/convective vortices provided from mobile and stationary platforms are discussed. Imaging of terrestrial dust devils has quantified their rotational and vertical wind speeds, translation speeds, dimensions, dust load, and frequency of occurrence. Imaging of martian dust devils has provided translation speeds and constraints on dimensions, but only limited constraints on vertical motion within a vortex. The longer mission durations on Mars afforded by long operating robotic landers and rovers have provided statistical quantification of vortex occurrence (time-of-sol, and recently seasonal) that has until recently not been a primary outcome of more temporally limited terrestrial dust devil measurement campaigns. Terrestrial measurement campaigns have included a more extensive range of measured vortex parameters (pressure, wind, morphology, etc.) than have martian opportunities, with electric field and direct measure of dust abundance not yet obtained on Mars. No martian robotic mission has yet provided contemporaneous high frequency wind and pressure measurements. Comparison of measured terrestrial and martian dust devil characteristics suggests that martian dust devils are larger and possess faster maximum rotational wind speeds, that the absolute magnitude of the pressure deficit within a terrestrial dust devil is an order of magnitude greater than a martian dust devil, and that the time-of-day variation in vortex frequency is similar. Recent terrestrial investigations have demonstrated the presence of diagnostic dust devil signals within seismic and infrasound measurements; an upcoming Mars robotic mission will obtain similar measurement types

    Continuous variable entanglement and quantum state teleportation between optical and macroscopic vibrational modes through radiation pressure

    Full text link
    We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.Comment: 18 pages, 10 figure

    Modeling the Subsurface Structure of Sunspots

    Get PDF
    While sunspots are easily observed at the solar surface, determining their subsurface structure is not trivial. There are two main hypotheses for the subsurface structure of sunspots: the monolithic model and the cluster model. Local helioseismology is the only means by which we can investigate subphotospheric structure. However, as current linear inversion techniques do not yet allow helioseismology to probe the internal structure with sufficient confidence to distinguish between the monolith and cluster models, the development of physically realistic sunspot models are a priority for helioseismologists. This is because they are not only important indicators of the variety of physical effects that may influence helioseismic inferences in active regions, but they also enable detailed assessments of the validity of helioseismic interpretations through numerical forward modeling. In this paper, we provide a critical review of the existing sunspot models and an overview of numerical methods employed to model wave propagation through model sunspots. We then carry out an helioseismic analysis of the sunspot in Active Region 9787 and address the serious inconsistencies uncovered by \citeauthor{gizonetal2009}~(\citeyear{gizonetal2009,gizonetal2009a}). We find that this sunspot is most probably associated with a shallow, positive wave-speed perturbation (unlike the traditional two-layer model) and that travel-time measurements are consistent with a horizontal outflow in the surrounding moat.Comment: 73 pages, 19 figures, accepted by Solar Physic

    Non-local rheology in dense granular flows -- Revisiting the concept of fluidity

    Get PDF
    Granular materials belong to the class of amorphous athermal systems, like foams, emulsion or suspension they can resist shear like a solid, but flow like a liquid under a sufficiently large applied shear stress. They exhibit a dynamical phase transition between static and flowing states, as for phase transitions of thermodynamic systems, this rigidity transition exhibits a diverging length scales quantifying the degree of cooperatively. Several experiments have shown that the rheology of granular materials and emulsion is non-local, namely that the stress at a given location does not depend only on the shear rate at this location but also on the degree of mobility in the surrounding region. Several constitutive relations have recently been proposed and tested successfully against numerical and experimental results. Here we use discrete elements simulation of 2D shear flows to shed light on the dynamical mechanism underlying non-locality in dense granular flows

    History and Applications of Dust Devil Studies

    Get PDF
    Studies of dust devils, and their impact on society, are reviewed. Dust devils have been noted since antiquity, and have been documented in many countries, as well as on the planet Mars. As time-variable vortex entities, they have become a cultural motif. Three major stimuli of dust devil research are identified, nuclear testing, terrestrial climate studies, and perhaps most significantly, Mars research. Dust devils present an occasional safety hazard to light structures and have caused several deaths
    corecore